c1bannerpc02.jpg c1bannerpc02-912.jpg

Driven by Innovation

Continuous innovation and breakthroughs have been made in the six core directions of manufacturing, technology, materials, cells, structure, and battery monitoring to provide users with a better experience.

Global Innovation and Research Center

SVOLT has established six major R&D Centers for global innovation and R&D.

c1_img01.png
  • 研發.svg

    2500+

    R&D personnel

  • 碩博.svg

    40%+

    Proportion of master's and doctoral degree candidates

  • 產線.svg

    13

    Professional trial production line

  • 專利.svg

    8000+

    Domestic and foreign industry patents

Core Technology Advantages

  • High safety

    With the goal of preventing thermal spread in the whole package, the safety of the cells is ensured from multiple dimensions, such as the intrinsic safety improvement, safety design of structural components, and the safety redundancy design.

    ARC testing

    • 2-5℃

      T1 improvement

    • 5-10℃

      T2 improvement

    • 50-100℃

      T3 decrease

    c1_img02.jpg
  • Fast charge

    All products have a capacity of 2.2C or above, and the proportion of cells (4C-6C) with higher fast charge capacity is gradually increasing.

    • Cathode system design

      Spot- line conductive additives are adopted to form a conductive network design with strong fast-charging capability to reduce impedance.

    • Anode system design

      Surface amorphous carbon coating material is adopted, with low OI value design.

    • Diaphragm pore design

      Highly porous (40%-50%) high-strength base film is adopted.

    • Design of ultra-high conductivity electrolyte

      Lithium ion conductivity is enhanced by viscosity reducing solvents + low impedance additives.

    c1_img03.jpg
  • High specific energy

    For the square cell, ternary achieves 300Kh/kg, and the iron lithium exceeds 190Kh/kg.

    • Application of cathode and anode materials with high top density and high-gram capacity.

    • Application of pre-lithium technology, double-layer coating, and thick electrode technology.

    • Application of minimalist structures to improve space utilization.

    c1_img04.jpg
  • Long lifespan

    Energy storage of over 8,000 cycles and power of over 3,000 cycles.

    • Cathode selection design

      Iron block + phosphoric acid process is selected for the material precursor, which can prevent the introduction of impurities in the raw material and control the magnetic material content to be ≤ 2ppm.

    • Anode selection design

      Generally, single-particle route is adopted or a certain proportion of secondary particles is mixed. The surface of the particles is smooth, with a small proportion of fine powder and uniform particle size distribution.

    • Diaphragm selection design

      A mixed coating layer isolation film with a coating thickness of 2-3 μm is selected to improve the ability of isolation film to adsorb electrolyte and ensure large surface wetting of the electrode.

    • Electrolyte design

      The proportion of film-forming additives is adjusted to maintain the stability of SEI during the cycling process.

    c1_img05.jpg

Six Major Innovations

Continuous innovation and breakthroughs have been made in the six core directions of manufacturing, technology, materials, cells, structure, and battery monitoring to provide users with a better experience.

  • download.jpg
  • c1_img08.jpg
  • 電芯創新.jpg
  • 材料創新背景圖 (1).jpg
  • c1_img08.jpg
  • 監控背景圖.jpg
c1_img06.jpg
  • c1_logo01.svg
  • c1_logo02.svg

Creating Smart Factory System Standards

SVOLT has successfully established a smart factory system standard to solve industry pain points such as low R&D efficiency, large amount of manual work, large batch quality fluctuations, and extreme manufacturing equipment, providing industry standards for the construction of smart factories. At present, the smart factory model is being replicated in multiple manufacturing bases across the country, promoting the intelligent transformation and upgrading of the new energy industry, and supporting the national energy revolution.

Promoting Intelligent Transformation and
Upgrading of the New Energy Industry

  • 安全.svg

    Maximum safety

    The safety of batteries comes first. The application of advanced intelligent manufacturing technology is carried out with focus on production and driving safety. During the production process, 5G+ visual inspection and thermal runaway-related application cases are followed to ensure the safety of the production process.

  • 質量.svg

    Top quality

    Due to the complexity of the production process of lithium batteries, IoT technology is used to collect 27000 data points of process, equipment, quality, and products for real-time monitoring and analysis, achieving a closed-loop management of collection-analysis-feedback control.

  • 效率.svg

    Peak efficiency

    The production efficiency of stacking has been improved from 0.6/s per stack (45-degree rotary stacking) in 2019 to 0.125/s per stack (multi-stack cutting, multi-stack stacking) in 2022.

  • 人力.svg

    Minimum manpower

    At present, 90% automation has been achieved in the lithium battery industry in production, and SVOLT realized 100% fully automatic detection and zero leak checks with the help of AI big data technology. Key processes have gradually been launched, and unmanned factories will gradually be achieved in the future.

主站蜘蛛池模板: 特级毛片www| 无限韩国视频免费播放| 亚洲精品永久www忘忧草| 特黄特黄aaaa级毛片免费看| 亚洲深深色噜噜狠狠爱网站| 欧美不卡视频一区发布| 久久精品国产99久久丝袜| 日本亚洲色大成网站www久久 | 久久久久久国产精品免费免费| 搡女人真爽免费影院| 一本一本久久a久久精品综合 | 久久99热精品免费观看牛牛| 成人免费黄色网址| chinese国产xxxx实拍| 国产精品资源网| 4hu四虎最新免费地址| 国产一区在线mmai| 精品一区二区91| 亚洲欧美国产精品专区久久| 最近2019中文字幕mv免费看 | 老少配老妇老熟女中文普通话| 免费看的一级毛片| 欧美激情综合色综合啪啪五月| 亚洲AV无一区二区三区久久| 日本三级韩国三级美三级91| xxxxx日韩| 国产精品国产三级国产潘金莲| 高清色黄毛片一级毛片| 午夜精品福利在线观看| 深夜a级毛片免费视频| 亚洲AV综合色区无码一区| 无码av中文一区二区三区桃花岛 | 美女被网站大全在线视频| 免费a级午夜绝情美女视频| 欧美国产伦久久久久| 久久亚洲AV无码精品色午夜麻豆| 小婷的性放荡日记h交| 78成人精品电影在线播放日韩精品电影一区亚洲 | 91精品国产自产在线观看高清| 无人高清影视在线观看视频| aaa日本高清在线播放免费观看 |